Epigenetic Regulation of Cardiac Progenitor Cells Marker c-kit by Stromal Cell Derived Factor-1α
نویسندگان
چکیده
BACKGROUND Cardiac progenitor cells (CPCs) have been proven suitable for stem cell therapy after myocardial infarction, especially c-kit(+)CPCs. CPCs marker c-kit and its ligand, the stem cell factor (SCF), are linked as c-kit/SCF axis, which is associated with the functions of proliferation and differentiation. In our previous study, we found that stromal cell-derived factor-1α (SDF-1α) could enhance the expression of c-kit. However, the mechanism is unknown. METHODS AND RESULTS CPCs were isolated from adult mouse hearts, c-kit(+) and c-kit(-) CPCs were separated by magnetic beads. The cells were cultured with SDF-1α and CXCR4-selective antagonist AMD3100, and c-kit expression was measured by qPCR and Western blotting. Results showed that SDF-1α could enhance c-kit expression of c-kit(+)CPCs, made c-kit(-)CPCs expressing c-kit, and AMD3100 could inhibit the function of SDF-1α. After the intervention of SDF-1α and AMD3100, proliferation and migration of CPCs were measured by CCK-8 and transwell assay. Results showed that SDF-1α could enhance the proliferation and migration of both c-kit(+) and c-kit(-) CPCs, and AMD3100 could inhibit these functions. DNA methyltransferase (DNMT) mRNA were measured by qPCR, DNMT activity was measured using the DNMT activity assay kit, and DNA methylation was analyzed using Sequenom's MassARRAY platform, after the CPCs were cultured with SDF-1α. The results showed that SDF-1α stimulation inhibited the expression of DNMT1 and DNMT3β, which are critical for the maintenance of regional DNA methylation. Global DNMT activity was also inhibited by SDF-1α. Lastly, SDF-1α treatment led to significant demethylation in both c-kit(+) and c-kit(-) CPCs. CONCLUSIONS SDF-1α combined with CXCR4 could up-regulate c-kit expression of c-kit(+)CPCs and make c-kit(-)CPCs expressing c-kit, which result in the CPCs proliferation and migration ability improvement, through the inhibition of DNMT1 and DNMT3β expression and global DNMT activity, as well as the subsequent demethylation of the c-kit gene.
منابع مشابه
Cardiac Explant-Derived Cells Are Regulated by Notch-Modulated Mesenchymal Transition
BACKGROUND Progenitor cell therapy is emerging as a novel treatment for heart failure. However the molecular mechanisms regulating the generation of cardiac progenitor cells is not fully understood. We hypothesized that cardiac progenitor cells are generated from cardiac explant via a process similar to epithelial to mesenchymal transition (EMT). METHODS/FINDINGS Explant-derived cells were ge...
متن کاملHypoxic Preconditioning Improves Survival of Cardiac Progenitor Cells: Role of Stromal Cell Derived Factor-1α–CXCR4 Axis
BACKGROUND Cardiac progenitor cells (CPCs) have been shown to be suitable in stem cell therapy for resurrecting damaged myocardium, but poor retention of transplanted cells in the ischemic myocardium causes ineffective cell therapy. Hypoxic preconditioning of cells can increase the expression of CXCR4 and pro-survival genes to promote better cell survival; however, it is unknown whether hypoxia...
متن کاملبررسی اثر آگونیست -آدرنرژیکی ایزوپروترنول بر بیان miR-886-3p و miR-23a در سلولهای بنیادی مزانشیمی مغز استخوان انسان
Background and Objective: Mobilization of Hematopoietic Stem Cells (HSCs) for transplantation and the importance of -adrenergic signals in induction of this process have been well investigated. However, little is known about the role of -adrenergic signals in mobilization of HSCs and factors influenced by these signals. The Chemokine Stromal Derived Factor -1 (SDF-1) which is expressed by hum...
متن کاملSimvastatin combined with bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis through SDF-1α/CXCR4 pathway
Objective(s): Chemokines are wound mediators that promote angiogenesis during wound healing. We hypothesized that Simvastatin in combination with the bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis via SDF-1α/CXCR4 pathway.Materials and Methods: Under general anesthesia, deep partial-...
متن کاملCritical role of SDF-1α-induced progenitor cell recruitment and macrophage VEGF production in the experimental corneal neovascularization
PURPOSE To address the roles of the stromal derived factor-1 (SDF-1) α in the course of experimental corneal neovascularization (CNV). METHODS CNV was induced by alkali injury and compared in SDF-1α- or vehicle-treated mice two weeks after injury. Angiogenic factor expression in the early phase after injury was quantified by reverse transcription polymerase chain reaction (RT-PCR). Progenitor...
متن کامل